

π^2 -CYGNI

美国实验室新一代真空紫外线光刻系统

特点

- 新一代 紫外线光源: 172 nm
- 同类最佳的输出强度
- 杰出的光束均匀度: 可用光圈的3%
- 灯泡寿命更长: 曝光高达30,000次
- 瞬间启动
- 紧凑,坚固,便携
- 标准化的附件安装系统: 一个灯泡, 多种应用
- 操作简单、易用
- 环保

π²-CYGNI 真空紫外线光源,带硬接触式防暴 露附件

应用

- 高分辨率光刻
- 光烧蚀
- 光解/光催化过程
- 表面能改性
- 臭氧产生
- 低损伤原子级表面清洁
- 增强薄膜附着力

高功率平面真空-紫外线在光处理中展现了新的可能性

革命性的采用全新的灯泡,具有高功率,出色的均匀性和多功能性,效率高并且设计紧凑,采用模块化形式! 在172 nm 创造性的引入 π 2-CYGNI系列真空紫外线处理系统。

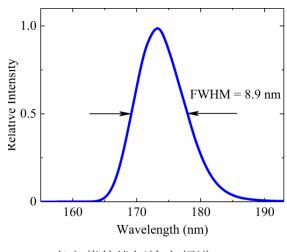
172纳米全新加工原理

传统172 nm光源的低输出功率阻碍了该波长在研究和生产中的广泛应用。 π 2-CYGNI克服了这一障碍,并揭示了172nm的真正能力-全新化学驱动方法,反应方式和加工技术。 紫外线不仅仅用于光刻和固化!

全新能量驱动方式

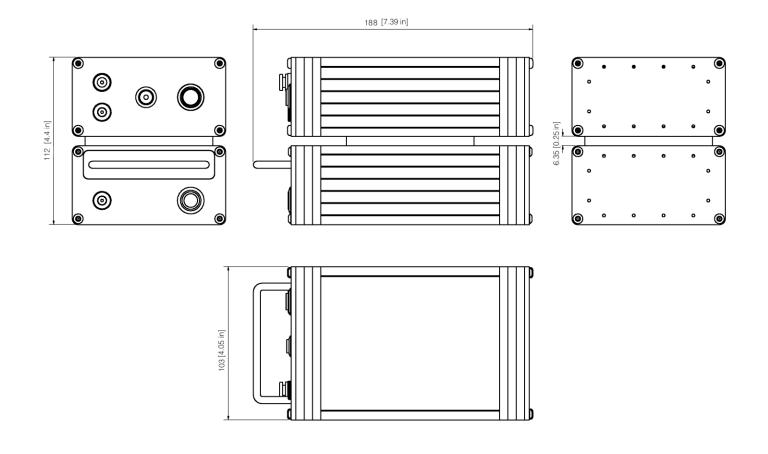
紫外线弧光灯可提供较高的平均功率。 准分子紫外线源提供 高光子通量。 π 2-CYGNI提供高平均功率和高光子通量- 无需 主动或外部冷却。 高功率和高光子通量的这种独特组合包装 在便携的封装内,并引发了其他光源无法实现的大面积反应 和过程。

全新技术灯具


每个 π 2-CYGNI的核心是一个超薄 (<4毫米) 平面微腔 放电灯。 与传统的弧光放电灯相比, 广域发射提供了卓越的均匀性, 同时消除了对复杂的聚光, 准直和均化光 学器件的需求。

紫外线无泄漏

在 π 2-CYGNI之前,产生紫外线通常意味着产生有毒物质,低转换效率和高设备成本。 π 2-CYGNI通过提供一种环保且节能的解决方案打破了这些障碍。 π 2-CYGNI的制造和使用过程中不使用有毒材料,在生产过程中使用 π - CYGNI可以减少化学材料和水的消耗。 有效的降低了使用成本,即成本仅是使用其他172 nm光源成本的一小部分。


π²-Cygni 系统参数

输出强度	> 10 mW/cm ²		
强度均匀性	< 3%		
峰值输出波长	172 nm		
-3dB宽度(FWHM)	8.9 nm		
发光面积	43 mm x 43 mm		
预热时间 (从0到95%)	< 2 s		
直流输入电压	12 V		
电源输入电压	110-220 V / 50-60 Hz		
氮气/氩气流速*	0.5-1 SCFM		
寿命	> 5000 hours		
功耗	< 25 W		
传输环境:	氮气, 氩气, UV级熔融 石英, 高真空		

真空紫外线灯输出频谱

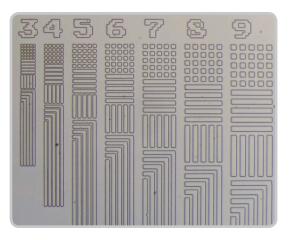
Note: 需要使用干氮气或氩气吹扫

流程应用示例: 有机高分子照相照相术

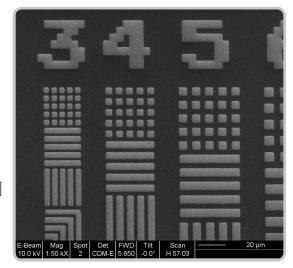
π -Cygni消除了对特定抗蚀剂化学物质的需求

由于光具有高能量(每个光子7.2eV),现在几乎可以将任有机聚合物用作抗蚀剂! π 2-CYGNI的172nm可实现更高分辨率的成像,使用简单且廉价的抗蚀剂可以消除传统基于DNQ的抗蚀剂系统产生的碱废物。

新型,新的可能性


重新定位传统的光刻胶。由于曝光机制的性质,不再需要光敏剂。简而言之, π 2-CYGNI分解有机聚合物链,直到它们挥发和蒸发。此过程是通用的-几乎所有有机聚合物现在都可以用作光致抗蚀剂,即使是固体形式也是如此。

干/正/负处理-由您决定!


由于有机膜质量减少,在曝光期间产生图像,因此消除了对单独显影步骤的需要。由此产生的高对比度足以用于其他过程,从而减少了处理时间并减少了废物的生。为了满足更苛刻的应用,可以在曝光后对有机聚合物进行进一步处理以提高分辨率。但是,与传统抗蚀剂不同,色调(正或负)由显影液而不是敏化剂决定。除了减少质量和蒸发外,由于链长减少,在曝光过程中聚合物中也会发生交联。这种交联改变了聚合物在特定溶剂中的溶解度-醇基显影液产生正图像,而丙酮和类似溶剂产生负图像。

无与伦比的单曝光分辨率

较短的波长 较高的分辨率。与I线光刻相比, π2-CYGNI具有将分辨率提高50%的潜力。

通过光掩模曝光90 s后丙烯酸片的光学显微照片。 顶部的数字表示特征尺寸, 单位为μm

硅衬底上200 nm厚的PMMA光致抗蚀剂上通过光掩模曝光40 s后的SEM图像。 顶部的数字表示特征尺寸,单位为μm

示例处理时间

材料	修改类型	深度	曝光时间
PMMA 光刻胶	光烧蚀	> 200 nm	40 s
固体丙烯酸	光烧蚀	> 350 nm	90 s
固体PDMS	玻璃化	-	30 s